UNIVERSITAT
POLITECNICA
DE VALENCIA

Problem definition

« Several of the successful applications of machine
learning techniques are based on the amount of data currently
available.

« But sometimes data is scarce, i.e: difficult processes to collect
it (i.e: medical imaging).
« We can obtain more data performing controlled distortions

that do not modify the true nature of the sample, this is
called data augmentation.
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Figure 1: Left to right: original image and different alterations.
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Figure 2: Another example of simulating different positions and
rotations with different transformations.

« These transformations are hand-crafted and problem-
dependent. Could we provide a domain-agnostic
approach to do this?

(Generative models

= Neural Networks are good at classitying, meaning that they
learn a “mapping” between the input and the output.
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« We can force this map to mirror the input, so we end up
with a model that can reconstruct the sample.
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Figure 4: Example of DNN-based reconstruction model.

« These models usually encode the input in some manifold, and
then decode it to recover the original sample.

= This kind of models are known as (Gzenerative models.

« Could we use this model’s “inner representation” to cre-
ate new outputs?

« Could these artificial samples be useful? (i.e: for training
classifiers)

Exploring generative models with Python

Javier Jorge Cano
PyCon 2018

« Two techniques dominate recent approaches to deal with
these problems. One line of research is based on Gener-

ative Adversarial Networks (GAN) and the other one
is based on Variational Autoencoders (VAE).

« GAN: Based on the mixture of Game Theory and Machine
Learning, where two networks (Generator and Discriminator)
are competing in a game where one wants to fool the other.
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Figure 5: Discriminator learns to decide if a sample is true or fake,
while Generator aims to fool the discriminator.

« VAE: Based on the principle of encoding-decoding, these
models aim to minimize the reconstruction error (i.e: Mean
squared error) while constraining the inner representation to
be similar to a simple distribution (i.e: Gaussian).
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Figure 6: VAE architecture, the input x; is projected in the
manifold, obtaining the vector z;. The decoder recovers this vector
getting the reconstructed input Xy.
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Figure 7: Lett: 2D Latent space provided by the model, trained
with MNIST dataset. Right: Sampling the 2D manifold and getting
the images.

« We are going to use VAE as they can provide the manifold
directly. With this manifold we can perform different modi-
fications over the original data.

VAE for data augmentation

o Train VAE with your training set and use a validation set in

order to check the model’s evolution.

® Project your training set using the model, obtaining the
projected versions z; for each sample.

o Alter these z; vectors, and then reconstruct them.
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Figure 8: Encoding the input, modifying it and then reconstructing
the altered sample with the decoder.

Different methods to alter the projected samples:

Initial projection Performing interpolation
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Applying noise Performing extrapolation

Figure 9: 2D example manifold’s transformations.
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Figure 10: Original input and the different outputs depending on the
modification, each column corresponds to the same digit.
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Figure 11: Smooth transformations that capture changes in the scale
and rotation, even changes among classes.
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Case use: UJIPEN Dataset

Labels Dim. Tr. Val. Ts.
07 4,9k (70x70 px) 5,820 582 4,656
Table 1: Dataset distribution.
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Figure 12: Some samples
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(Generation methods

Classifier Baseline Noise Interpolation Extrapolation
Support vector machines  54.79 59.09 63.48 63.19
K-nearest neighbors 31.86  39.29 H3.15 46.74
Neural Network 63.99  57.20 65.60 64.09

Table 2: UJIPEN results, accuracy on test set (%)[1].
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Figure 13: Top row: Samples after interpolating. Bottom row:
Samples after extrapolating.
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Figure 14: Linear interpolation between samples from the same class.

Conclusions

« We used a generative model, a VAE in particular, to create
synthetic samples.

« We performed different alterations in the inner representation
that helped the selected classifiers.

« For future work, we want to use this model in different data:
text, speech, feature vectors, etc.

Python For Science: All the experiments were performed
with:

« Numpy.
= TensorFlow.
« Matplotlib.
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