
Exploring generative models with Python
Javier Jorge Cano

PyCon 2018

Problem definition

• Several of the successful applications of machine
learning techniques are based on the amount of data currently
available.

• But sometimes data is scarce, i.e: difficult processes to collect
it (i.e: medical imaging).

• We can obtain more data performing controlled distortions
that do not modify the true nature of the sample, this is
called data augmentation.

Figure 1: Left to right: original image and different alterations.

Figure 2: Another example of simulating different positions and
rotations with different transformations.

• These transformations are hand-crafted and problem-
dependent. Could we provide a domain-agnostic
approach to do this?

Generative models

• Neural Networks are good at classifying, meaning that they
learn a “mapping” between the input and the output.

Figure 3: Example of DNN-based classifier.

• We can force this map to mirror the input, so we end up
with a model that can reconstruct the sample.

Figure 4: Example of DNN-based reconstruction model.

• These models usually encode the input in some manifold, and
then decode it to recover the original sample.

• This kind of models are known as Generative models.
• Could we use this model’s “inner representation” to cre-
ate new outputs?

• Could these artificial samples be useful? (i.e: for training
classifiers)

• Two techniques dominate recent approaches to deal with
these problems. One line of research is based on Gener-
ative Adversarial Networks (GAN) and the other one
is based on Variational Autoencoders (VAE).

• GAN: Based on the mixture of Game Theory and Machine
Learning, where two networks (Generator and Discriminator)
are competing in a game where one wants to fool the other.

G
D T/F

xt

zt

x̂t

Figure 5: Discriminator learns to decide if a sample is true or fake,
while Generator aims to fool the discriminator.

• VAE: Based on the principle of encoding-decoding, these
models aim to minimize the reconstruction error (i.e: Mean
squared error) while constraining the inner representation to
be similar to a simple distribution (i.e: Gaussian).

σ

µ

xt x̂t

zt = µt + σt ∗ ϵ

ϵ ∼ N (0, 1)

ϵ

Figure 6: VAE architecture, the input xt is projected in the
manifold, obtaining the vector zt. The decoder recovers this vector
getting the reconstructed input x̂t.

Figure 7: Left: 2D Latent space provided by the model, trained
with MNIST dataset. Right: Sampling the 2D manifold and getting
the images.

• We are going to use VAE as they can provide the manifold
directly. With this manifold we can perform different modi-
fications over the original data.

VAE for data augmentation

1 Train VAE with your training set and use a validation set in
order to check the model’s evolution.

2 Project your training set using the model, obtaining the
projected versions zt for each sample.

3 Alter these zt vectors, and then reconstruct them.

z1

z2 zt+1zt

Figure 8: Encoding the input, modifying it and then reconstructing
the altered sample with the decoder.

Different methods to alter the projected samples:

Initial projection

Applying noise

Performing interpolation

Performing extrapolation
Figure 9: 2D example manifold’s transformations.

With extrapolation

With interpolation

Adding noise

Real Instances

Figure 10: Original input and the different outputs depending on the
modification, each column corresponds to the same digit.

Figure 11: Smooth transformations that capture changes in the scale
and rotation, even changes among classes.

Case use: UJIPEN Dataset

Labels Dim. Tr. Val. Ts.
97 4,9k (70x70 px) 5,820 582 4,656

Table 1: Dataset distribution.

Figure 12: Some samples from UJIPEN.

Generation methods
Classifier Baseline Noise Interpolation Extrapolation

Support vector machines 54.79 59.09 63.48 63.19
K-nearest neighbors 31.86 39.29 53.15 46.74
Neural Network 63.99 57.20 65.60 64.09

Table 2: UJIPEN results, accuracy on test set (%)[1].

Figure 13: Top row: Samples after interpolating. Bottom row:
Samples after extrapolating.

Figure 14: Linear interpolation between samples from the same class.

Conclusions

• We used a generative model, a VAE in particular, to create
synthetic samples.

• We performed different alterations in the inner representation
that helped the selected classifiers.

• For future work, we want to use this model in different data:
text, speech, feature vectors, etc.

Python For Science: All the experiments were performed
with:
• Numpy.
• TensorFlow.
• Matplotlib.

Reference

[1] J. Jorge, J. Vieco, R. Paredes, J. A. Sanchez, and J. M. Benedí.
Empirical evaluation of variational autoencoders for data
augmentation.
In Proceedings of the 13th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 5: VISAPP, pages 96–104. INSTICC,
SciTePress, 2018.


