
Cloud-agnostic deployment of distributed TensorFlow
Javier Jorge Cano

EuroPython 2018

Highlights

When you leave this poster, you will know more about:
• Infrastructure as code (Infrastructure Manager).
• Automatic SW provisioning and configuration (Ansible).
• Training distributed deep learning models (TensorFlow).

Objectives

• Deploy a transient cluster of nodes to perform the training of
a neural network using TensorFlow.

• Create, provision and configure the cluster in an unattended
way.

• Perform these steps independently, as much as possible, from
the cloud provider.

Motivation

• A typical Neural Network architecture has an input xt, the
output yt as the result of the function that it represents
f (xt, w), with the set of parameters w.

xt ŷt = f(xt; w)

• We compute the gradients (∆w) of this function through
Backpropagation, and then we can update the current
weights:

w′ = w − η∆w (1)
• If we want to train this model in a distributed environment,
we could use the following architecture:

Parameter Server

Worker 
Node 1

Worker 
Node 2 … Worker 

Node n

w′ = w − η∆w

∆w
w′

Where we have
• Parameter server (PS): Node that gathers the gradients and averages
them, and scatters the update of the weights.

• Worker node (WN): Node that computes the forward-backward steps,
obtaining the gradients to send to the PS.

• Data nodes: Some way of providing the data to the WN, i.e: text files,
HDFS, S3 buckets, ...

We want to deploy, configure and run the training automati-
cally, ending up with a persistent trained model available for
inference.

Deploying the architecture:
Infrastructure Manager

• The Infrastructure Manager (IM) [2] is a general platform
to deploy on-demand customizable virtual computing infras-
tructures.

• With the IM, you can deploy complex and customized virtual
infrastructures on multiple back-ends.

• It automates the Virtual Machine Image (VMI) selection,
deployment, configuration, software installation, monitoring
and update of virtual infrastructures.

• It provides DevOps capabilities, such as roles, based on An-
sible.

• “Resource and Application Description Language” (RADL):
High-level language to define virtual infrastructures and VM
requirements. The general structure of these files is as fol-
lows:
network <network_id > (<features >)

system <system_id > (<features >)

configure <configure_id > (<Ansible recipes >)

contextualize [max_time] (

system <system_id > configure <configure_id > [step <num>]

...

)

deploy <system_id > <num> [<cloud_id >]

• Example of a minimal RADL file:

Defining the network:
network public (

outbound = ’yes’ and # Visible from outside
outports = ’2222/tcp−2222/tcp,22/tcp−22/tcp,...’ and # List of ports open
provider_id = ’vpc−vpc_id.subnet−subnet_id’ # Net−ID from the cloud provider

)

Defining the node’s parameters:
system node (

net_interface.0.connection = ’public’ and

net_interface.0.dns_name = ’node0’ and

disk.0.image.url = ’aws://us−east−1/ami−5c66ea23’ and
instance_type = ’t2.micro’ and

disk.0.os.name=’linux’ and

disk.0.os.credentials.username=’ubuntu’ and

disk.0.applications contains (

name=’ansible.modules.git+URL/ansible−role−tf|tf_node’)
)

Defining how it is configured, using Ansible roles:
configure install_tf (

@begin

−−−
− vars:

...

tasks:

...

roles:

− { role: ’tf_node’}
@end

)

configure run_exp (

...

)

Finally, we specify the number of nodes that we want to deploy,
and if we have multiple “configure” rules, the order of them:
deploy node 2

contextualize (

system node configure install_tf step 1

system node configure run_exp step 2

)

Web Interface CLI Interface

Infrastructure Manager

Configuration 
Manager Ansible

Cloud 
Selector

VM

VM
Master VM

Cloud Connector
Amazon AWS Microsoft Azure Google Cloud …

XML-RPC API REST API

Conf. 
and 

Cntxt. 
Files

…

VM

Contextualization
AgentAnsible

RADL RADL

TensorFlow’s Ansible Role

The role organizes and performs the following steps to install
TF:

1 Prepare system and Python dependencies, installing them
with apt module.

2 With the module pip, installs jupyter, Matplotlib,
boto3 (AWS interaction) and finally TF.

3 Copy the training script parametrized with Jinja2, a
templating language, to provide the parameters for the
distributed training.

4 Launch the training process.

Regarding the storage, we have implemented two options:
• Using Hadoop Distributed File System (HDFS): This is con-
figured using another role.

• Using S3 Select: Included in the training script.

Workflow

• Launch the infrastructure with IM (auth_file.dat contains
the cloud-provider credentials):

im_client.py −a auth_file.dat create dist_tf.radl

• Check the status of the deployment (with the infrastructure-
id that you got in the creation):

im_client.py −a auth_file.dat getstate <inf−id>

• Check the status of the contextualization:

im_client.py −a auth_file.dat getcontmsg <inf−id>

• List your infrastructures:

im_client.py −a auth_file.dat list

• Destroy the infrastructure:

im_client.py −a auth_file.dat destroy <inf−id>

• And other commands, such as addresource,
removeresource, start, stop, ...

TensorFlow Training Script

• TF developers focused their efforts on making distributed
TensorFlow fast and easy to use. We should just introduce a
few changes in our original code [1].

• First, indicating the nodes’ addresses and the tasks for each
node. This is introduced in the code when the infrastructure
is created thanks to Ansible and Jinja2.
# values replaced by Jinja2
parameter_servers = [’ps−0:2222’]
workers = [’worker−0:2222’, ’worker−1:2222’]
job_name = ’’ps’’

task_index = 0

• And then create the ClusterSpec with these values:
cluster = tf.train.ClusterSpec({"ps":parameter_servers , "worker":workers})

# start a server for a specific task
server = tf.train.Server(

cluster,

job_name=job_name ,

task_index=task_index)

• Now, the code is parametrized depending on who is the node
as follows:
if FLAGS.job_name == "ps":

server.join()

elif FLAGS.job_name == "worker":

with tf.device(tf.train.replica_device_setter(

worker_device="/job:worker/task:%d" % FLAGS.task_index ,

cluster=cluster)):

#Model’s definition from this point onwards

• And finally, in the workers’ section, we create a supervisor to
coordinate the actual training process:

is_chief = FLAGS.task_index == 0

sv = tf.train.Supervisor(

is_chief=is_chief ,

global_step=global_step ,

init_op=init_op)

with sv.prepare_or_wait_for_session(server.target) as sess:

# Training loop from this point onwards
if is_chief:

#Do checkpointing and logging
...

#When training is over, we stop the services and the coordinator.
sv.stop()

• When the training is completed, the final model is stored in
a S3 Bucket by means of the package boto3.

Conclusions

• We have shown how to deploy, configure and launch a TF
cluster automatically.

• We have used the Infrastructure Manager tool, with Ansible,
to define and create the infrastructure, independently from
the cloud provider.

• We have introduced how to change our TF code to a dis-
tributed TF version.

References

[1] Configuration files, roles and training scripts are publicly available on:
https://github.com/JJorgeDSIC.

[2] Infrastructure manager Web page.
http://www.grycap.upv.es/im.

Special thanks to the support of the EuroPython Society.

https://github.com/JJorgeDSIC
http://www.grycap.upv.es/im

