

Cloud-agnostic deployment of distributed TensorFlow

Javier Jorge Cano

EuroPython 2018

Highlights

When you leave this poster, you will know more about:

- Infrastructure as code (Infrastructure Manager).
- Automatic SW provisioning and configuration (Ansible).
- Training distributed deep learning models (TensorFlow).

Objectives

- Deploy a transient cluster of nodes to perform the training of a neural network using TensorFlow.
- Create, provision and configure the cluster in an unattended
- Perform these steps independently, as much as possible, from the cloud provider.

Motivation

• A typical Neural Network architecture has an input \mathbf{x}_t , the output \mathbf{y}_t as the result of the function that it represents $f(\mathbf{x}_t, w)$, with the set of parameters w.

• We compute the gradients (Δw) of this function through Backpropagation, and then we can update the current weights:

$$w' = w - \eta \Delta w \tag{1}$$

• If we want to train this model in a distributed environment, we could use the following architecture:

Where we have

- Parameter server (PS): Node that gathers the gradients and averages them, and scatters the update of the weights.
- Worker node (WN): Node that computes the forward-backward steps, obtaining the gradients to send to the PS.
- Data nodes: Some way of providing the data to the WN, i.e. text files, HDFS, S3 buckets, ...

We want to deploy, configure and run the training automatically, ending up with a persistent trained model available for inference.

Deploying the architecture: Infrastructure Manager

- The Infrastructure Manager (IM) [2] is a general platform to deploy on-demand customizable virtual computing infrastructures.
- With the IM, you can deploy complex and customized virtual infrastructures on multiple back-ends.
- It automates the Virtual Machine Image (VMI) selection, deployment, configuration, software installation, monitoring and update of virtual infrastructures.
- It provides DevOps capabilities, such as roles, based on Ansible.
- "Resource and Application Description Language" (RADL): High-level language to define virtual infrastructures and VM requirements. The general structure of these files is as fol-

```
network <network_id> (<features>)
system <system_id> (<features>)
configure <configure_id> (<Ansible recipes>)
contextualize [max_time] (
system <system_id> configure <configure_id> [step <num>]
```

• Example of a minimal RADL file:

deploy <system_id> <num> [<cloud_id>]

Defining the network:

```
network public (
         outbound = 'yes' and \#\ Visible\ from\ outside
         outports = '2222/tcp-2222/tcp,22/tcp-22/tcp,\ldots' and \#List\ of\ ports\ open
         \verb|provider_id| = \verb|'vpc-vpc_id.subnet-subnet_id| \# \textit{Net-ID from the cloud provider}|
```

Defining the node's parameters:

```
net_interface.0.connection = 'public' and
net_interface.0.dns_name = 'node0' and
disk.0.image.url = 'aws://us—east—1/ami—5c66ea23' and
instance_type = 't2.micro' and
 disk.0.os.name='linux' and
disk.O.os.credentials.username='ubuntu' and
disk.0.applications contains
        name='ansible.modules.git+URL/ansible—role—tf|tf_node')
```

Defining how it is configured, using Ansible roles:

```
configure install_tf (
- vars:
  tasks:
  roles:
       - { role: 'tf_node'}
configure run_exp
```

Finally, we specify the number of nodes that we want to deploy, and if we have multiple "configure" rules, the order of them: deploy node 2

```
contextualize (
       system node configure install_tf step 1
       system node configure run_exp step 2
```


TensorFlow's Ansible Role

The role organizes and performs the following steps to install

- Prepare system and Python dependencies, installing them with apt module.
- 2 With the module pip, installs jupyter, Matplotlib, boto3 (AWS interaction) and finally TF.
- 3 Copy the training script parametrized with Jinja2, a templating language, to provide the parameters for the distributed training.
- 4 Launch the training process.

Regarding the storage, we have implemented two options:

- Using Hadoop Distributed File System (HDFS): This is configured using another role.
- Using S3 Select: Included in the training script.

Workflow

• Launch the infrastructure with IM (auth file.dat contains the cloud-provider credentials):

im_client.py -a auth_file.dat create dist_tf.radl

• Check the status of the deployment (with the infrastructureid that you got in the creation):

im_client.py -a auth_file.dat getstate <inf-id>

• Check the status of the contextualization:

im_client.py -a auth_file.dat getcontmsg <inf-id>

• List your infrastructures:

im_client.py -a auth_file.dat list

• Destroy the infrastructure:

im_client.py -a auth_file.dat destroy <inf-id>

addresource, removeresource, start, stop, ...

TensorFlow Training Script

- TF developers focused their efforts on making distributed TensorFlow fast and easy to use. We should just introduce a few changes in our original code [1].
- First, indicating the nodes' addresses and the tasks for each node. This is introduced in the code when the infrastructure is created thanks to Ansible and Jinja2.

```
# values replaced by Jinja2
parameter_servers = ['ps-0:2222']
workers = ['worker-0:2222', 'worker-1:2222']
job_name = ''ps''
task_index = 0
```

• And then create the ClusterSpec with these values:

```
cluster = tf.train.ClusterSpec({"ps":parameter_servers, "worker":workers})
# start a server for a specific task
server = tf.train.Server(
        cluster,
       job_name=job_name
       task_index=task_index)
```

• Now, the code is parametrized depending on who is the node as follows:

```
if FLAGS.job_name == "ps":
        server.join()
elif FLAGS.job_name == "worker":
        with tf.device(tf.train.replica_device_setter(
                worker_device="/job:worker/task:%d" % FLAGS.task_index;
               cluster=cluster)):
                #Model's definition from this point onwards
```

is_chief = FLAGS.task_index == 0

sv = tf.train.Supervisor(

sv.stop()

• And finally, in the workers' section, we create a supervisor to coordinate the actual training process:

```
is_chief=is_chief,
        global_step=global_step
        init_op=init_op)
with sv.prepare_or_wait_for_session(server.target) as sess:
        # Training loop from this point onwards
        if is_chief:
                #Do checkpointing and logging
#When training is over, we stop the services and the coordinator.
```

• When the training is completed, the final model is stored in a S3 Bucket by means of the package boto3.

Conclusions

- We have shown how to deploy, configure and launch a TF cluster automatically.
- We have used the Infrastructure Manager tool, with Ansible, to define and create the infrastructure, independently from the cloud provider.
- We have introduced how to change our TF code to a distributed TF version.

References

[1] Configuration files, roles and training scripts are publicly available on: https://github.com/JJorgeDSIC.

```
[2] Infrastructure manager Web page.
  http://www.grycap.upv.es/im.
```

Special thanks to the support of the EuroPython Society.